Orbiter-Forum  

Go Back   Orbiter-Forum > Far Side of the Moon > Spaceflight News
Register Blogs Orbinauts List Social Groups FAQ Projects Mark Forums Read

Spaceflight News Share news, stories, or discussions about government and private spaceflight programs; including ESA, ISS, NASA, Russian Space Program, Virgin Galactic, & more!

Reply
 
Thread Tools
Old 12-22-2010, 09:07 AM   #31
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini Finishes Sleigh Ride by Icy Moons

December 21, 2010

On the heels of a successful close flyby of Saturn's moon Enceladus, NASA's Cassini spacecraft is returning images of Enceladus and the nearby moon Dione.

Several pictures show Enceladus backlit, with the dark outline of the moon crowned by glowing jets from the south polar region. The images show several separate jets, or sets of jets, emanating from the fissures known as "tiger stripes." Scientists will use the images to pinpoint the jet source locations on the surface and learn more about their shape and variability.

Click on images for details and larger versions
This raw image of Saturn's moon Enceladus was taken by NASA's Cassini spacecraft on Dec. 20, 2010. The spacecraft was approximately 155,000 kilometers (96,000 miles) away from Enceladus. Image credit: NASA/JPL/SSI
This raw image of Saturn's moon Enceladus was taken by NASA's Cassini spacecraft on Dec. 20, 2010. Image credit: NASA/JPL/SSI
This raw image of Saturn's moon Dione taken by NASA's Cassini spacecraft shows the fractured region known as "wispy terrain." Image credit: NASA/JPL/SSI


The Enceladus flyby took Cassini within about 48 kilometers (30 miles) of the moon's northern hemisphere. Cassini's fields and particles instruments worked on searching for particles that may form a tenuous atmosphere around Enceladus. They also hope to learn whether those particles may be similar to the faint oxygen- and carbon-dioxide atmosphere detected recently around Rhea, another Saturnian moon. The scientists were particularly interested in the Enceladus environment away from the jets emanating from the south polar region. Scientists also hope this flyby will help them understand the rate of micrometeoroid bombardment in the Saturn system and get at the age of Saturn's main rings.

This flyby of Enceladus, the 13th in Cassini's mission, took a similar path to the last Enceladus flyby on Nov. 30.

About eight hours before the Enceladus flyby, Cassini also swung past Dione at a distance of about 100,000 kilometers (62,000 miles). During that flyby, the spacecraft snapped clear, intriguing images of the bright, fractured region known as the "wispy terrain." These features are tectonic ridges and faults formed by geologic activity on the moon sometime in the past. Scientists will now be able to measure the depth and extent of them more accurately.

{...}
orb is offline   Reply With Quote
Thanked by:
Old 12-22-2010, 11:10 AM   #32
N_Molson
Addon Developer
 
N_Molson's Avatar

Default

Those jets are really impressive
N_Molson is offline   Reply With Quote
Old 12-29-2010, 11:39 PM   #33
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini Celebrates 10 Years Since Jupiter Encounter

December 29, 2010

Ten years ago, on Dec. 30, 2000, NASA's Cassini spacecraft made its closest approach to Jupiter on its way to orbiting Saturn. The main purpose was to use the gravity of the largest planet in our solar system to slingshot Cassini towards Saturn, its ultimate destination. But the encounter with Jupiter, Saturn's gas-giant big brother, also gave the Cassini project a perfect lab for testing its instruments and evaluating its operations plans for its tour of the ringed planet, which began in 2004.

"The Jupiter flyby allowed the Cassini spacecraft to stretch its wings, rehearsing for its prime time show, orbiting Saturn," said Linda Spilker, Cassini project scientist based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Ten years later, findings from the Jupiter flyby still continue to shape our understanding of similar processes in the Saturn system."

Cassini spent about six months - from October 2000 to March 2001 - exploring the Jupiter system. The closest approach brought Cassini to within about 9.7 million kilometers (6 million miles) of Jupiter's cloud tops at 2:05 a.m. Pacific Time, or 10:05 a.m. UTC, on Dec. 30, 2000.

Cassini captured some 26,000 images of Jupiter and its moons over six months of continual viewing, creating the most detailed global portrait of Jupiter yet.

Click on images for details
This true color mosaic of Jupiter was constructed from images taken by the narrow angle camera onboard NASA's Cassini spacecraft. Image credit: NASA/JPL/Space Science Institute
Unexpected dynamics in Jupiter's upper atmosphere, or stratosphere, including the birth and motion of a dark vortex wider than Earth. Image credit: NASA/JPL/Southwest Research Institute
Bands of eastward and westward winds on Jupiter appear as concentric rotating circles. Image credit: NASA/JPL/Southwest Research Institute
These images and movie show the distribution of the organic molecule acetylene at the north and south poles of Jupiter. Image credit: NASA/JPL/GSFC


While Cassini's images of Jupiter did not have higher resolution than the best from NASA's Voyager mission during its two 1979 flybys, Cassini's cameras had a wider color spectrum than those aboard Voyager, capturing wavelengths of radiation that could probe different heights in Jupiter's atmosphere. The images enabled scientists to watch convective lightning storms evolve over time and helped them understand the heights and composition of these storms and the many clouds, hazes and other types of storms that blanket Jupiter.

The Cassini images also revealed a never-before-seen large, dark oval around 60 degrees north latitude that rivaled Jupiter's Great Red Spot in size. Like the Great Red Spot, the large oval was a giant storm on Jupiter. But, unlike the Great Red Spot, which has been stable for hundreds of years, the large oval showed itself to be quite transient, growing, moving sideways, developing a bright inner core, rotating and thinning over six months. The oval was at high altitude and high latitude, so scientists think the oval may have been associated with Jupiter's powerful auroras.

The imaging team was also able to amass 70-day movies of storms forming, merging and moving near Jupiter's north pole. They showed how larger storms gained energy from swallowing smaller storms, the way big fish eat small fish. The movies also showed how the ordered flow of the eastward and westward jet streams in low latitudes gives way to a more disordered flow at high latitudes.

Meanwhile, Cassini's composite infrared spectrometer was able to do the first thorough mapping of Jupiter's temperature and atmospheric composition. The temperature maps enabled winds to be determined above the cloud tops, so scientists no longer had to rely on tracking features to measure winds. The spectrometer data showed the unexpected presence of an intense equatorial eastward jet (roughly 140 meters per second, or 310 mph) high in the stratosphere, about 100 kilometers (60 miles) above the visible clouds. Data from this instrument also led to the highest-resolution map so far of acetylene on Jupiter and the first detection of organic methyl radical and diacetylene in the auroral hot spots near Jupiter's north and south poles. These molecules are important to understanding the chemical interactions between sunlight and molecules in Jupiter's stratosphere.

As Cassini approached Jupiter, its radio and plasma wave instrument also recorded naturally occurring chirps created by electrons coming from a cosmic sonic boom. The boom occurs when supersonic solar wind - charged particles that fly off the sun - is slowed and deflected around the magnetic bubble surroun ding Jupiter.

Because Cassini arrived at Jupiter while NASA's Galileo spacecraft was still orbiting the planet, scientists were also able to take advantage of near-simultaneous measurements from two different spacecraft. This coincidence enabled scientists to make giant strides in understanding the interaction of the solar wind with Jupiter. Cassini and Galileo provided the first two-point measurement of the boundary of Jupiter's magnetic bubble and showed that it was in the act of contracting as a region of higher solar wind pressure blew on it.

"The Jupiter flyby benefited us in two ways, one being the unique science data we collected and the other the knowledge we gained about how to effectively operate this complex machine," said Bob Mitchell, Cassini program manager based at JPL. "Today, 10 years later, our operations are still heavily influenced by that experience and it is serving us very well."

In celebrating the anniversary of Cassini's visit 10 years ago, scientists are also excited about the upcoming and proposed missions to the Jupiter system, including NASA's Juno spacecraft, to be launched next August, and the Europa Jupiter System Mission, which has been given a priority by NASA.

{...}
orb is offline   Reply With Quote
Thanked by:
Old 01-10-2011, 11:15 PM   #34
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini to Probe Rhea for Clues to Saturn Rings

January 10, 2011

Saturn's icy moon Rhea might seem a strange place to look for clues to understanding the vast majestic rings encircling Saturn. But that's what NASA's Cassini spacecraft plans to do on its next flyby of Rhea. At closest approach, Cassini will pass within about 69 kilometers (43 miles) of the surface at 4:53 AM UTC on Tuesday, Jan. 11, which is 10:53 PM Pacific Time on Monday, Jan. 10. This flyby is the closest Cassini will get to the icy moon's surface.

Click on image to enlarge
This artist's concept shows the third flyby of Saturn's moon Rhea by NASA's Cassini spacecraft. It is the closest flyby of Cassini's mission. Image credit: NASA/JPL-Caltech


Rhea, Saturn's second largest moon, is the best available chance for studying how often tiny meteoroids bombard a surface. Rhea has almost no atmosphere, which allows Cassini's cosmic dust analyzer and radio and plasma wave instrument to detect the dusty debris that flies off the surface from tiny meteoroid bombardments. Counting these dust particles ejected from Rhea's surface helps scientists estimate the bombardment rate for the Saturn system and how often the icy rings have been polluted by particles from other places in the solar system. Understanding the contamination rate will enable scientists to improve estimates of the age of the rings.

Previous attempts to count this rate in the inner part of the Saturn system have been confounded by the dusty E ring, made of icy particles spewed by the moon Enceladus. But at Rhea, scientists can sufficiently filter out the E-ring effect. The cosmic dust analyzer will also be set to look for smaller particles than it looked for during a previous Rhea flyby in March 2010.

The upcoming flyby will also enable scientists to gather more data on Rhea’s very thin oxygen-and-carbon-dioxide atmosphere that was recently discovered by Cassini scientists using the ion and neutral mass spectrometer and the Cassini plasma spectrometer. Fields and particles instruments will also investigate the interaction between Rhea and the magnetic bubble around Saturn known as the magnetosphere.

Cassini will also snap pictures of the Rhea surface, a venture that will include making a global mosaic of such regions as the large Tirawa basin and the dark bluish spots around Rhea's equator. The imaging cameras will also take another look to see if there is any more evidence of a ring around Rhea.

This is the third close flyby of Saturn's moon Rhea. The closest flyby before this one was 100 kilometers (60 miles) in altitude.

{...}
orb is offline   Reply With Quote
Thanked by:
Old 01-13-2011, 09:44 AM   #35
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini's Snaps of Rhea Coming Down

January 12, 2011

Raw images obtained by NASA's Cassini spacecraft from the closest flyby of Saturn's moon Rhea have begun streaming to Cassini's raw image page.

Click on image to enlarge
NASA's Cassini spacecraft captured this raw image of Saturn's icy moon Rhea in the foreground. Image credit: NASA/JPL/Space Science Institute


At closest approach, Cassini glided within about 69 kilometers (43 miles) of Rhea's surface at 4:53 AM UTC on Jan. 11, which was 10:53 PM Pacific Time on Jan. 10.

To see the raw images, go to http://saturn.jpl.nasa.gov/photos/raw/ and click on "Search Images."

{...}
orb is offline   Reply With Quote
Thanked by:
Old 01-14-2011, 09:09 AM   #36
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini Rocks Rhea Rendezvous

January 13, 2011

NASA's Cassini spacecraft has successfully completed its closest flyby of Saturn's moon Rhea, returning raw images of the icy moon's surface.

Pictures of the Rhea surface taken around the time of closest approach at 4:53 a.m. UTC on Jan. 11, 2011, which was 10:53 p.m. PST, Jan. 10, show shadowy craters at a low sun angle. A portrait of bright, icy Rhea also captures Saturn's rings and three other moons clearly visible in the background [the picture at previous post - orb].

Click on the image for details
This raw image obtained by NASA's Cassini spacecraft of Saturn's moon Rhea shows craters in an area between day and night on the icy moon. Image credit: NASA/JPL/SSI


Images obtained by Cassini's imaging science subsystem show an old, inert surface saturated with craters, just like the oldest parts of Earth's moon. But there appear to be some straight faults that were formed early in Rhea's history, which never developed the full-blown activity seen on another of Saturn's moons, Enceladus.

The flyby of Rhea also presented scientists with their best available chance to study how often tiny meteoroids bombard the moon's surface. Scientists are now sifting through data collected on the close flyby by the cosmic dust analyzer and the radio and plasma wave science instrument. They will use the data to deduce how often objects outside the Saturn system contaminate Saturn's rings, and to improve estimates of how old the rings are.

Scientists using Cassini's fields and particles instruments are also looking through their data to see if they learned more about Rhea's very thin oxygen-and-carbon-dioxide atmosphere and the interaction between Rhea and the particles within Saturn's magnetosphere, the magnetic bubble around the planet.

At closest approach, Cassini passed within about 69 kilometers (43 miles) of the surface.

{...}
orb is offline   Reply With Quote
Thanked by:
Old 01-14-2011, 02:25 PM   #37
N_Molson
Addon Developer
 
N_Molson's Avatar

Default

Once again, those pictures are really awesome. The Saturn moons system is really an alien (and frozen to a point it's scary) world !
N_Molson is offline   Reply With Quote
Old 02-01-2011, 07:29 PM   #38
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

Scientific American: Where's Saturn? Cassini Spacecraft Helping Provide More Accurate Planetary Coordinates:
Quote:
{...}

Astronomers are now using the Cassini spacecraft, which took up residence around Saturn in 2004, to refine their knowledge of the ringed planet's position and motion. Cassini's everyday radio transmissions act as a beacon as the spacecraft goes about its mission; by pinpointing its location in the sky using an array of powerful radio telescopes and combining that information with other telescope data, researchers can also get an exceptionally accurate bead on Saturn's position as it moves along its orbit around the sun. Thanks to Cassini, astronomers can now foretell the position of Saturn decades down the road to within a few kilometers. A group of researchers from the NASA Jet Propulsion Laboratory (JPL) in Pasadena, Calif., and the National Radio Astronomy Observatory published a report from this ongoing Cassini campaign in the February issue of The Astronomical Journal.

{...}
orb is offline   Reply With Quote
Old 02-01-2011, 09:03 PM   #39
N_Molson
Addon Developer
 
N_Molson's Avatar

Default

I never thought that an orbital probe could be used to track the planet's position, but yes, that seems pretty obvious !
N_Molson is offline   Reply With Quote
Old 02-01-2011, 09:07 PM   #40
Urwumpe
Certain Super User
 
Urwumpe's Avatar

Default

I never thought that a probe can last so long so far out there, doing so much science all the time. It is a really a masterpiece.
Urwumpe is offline   Reply With Quote
Old 02-01-2011, 10:58 PM   #41
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

...And there's more today from Cassini than I thought - below.
________________________________________

NASA / NASA JPL:
Cassini Sends Back Postcards of Saturn Moons

February 01, 2011

On Jan. 31, 2011, NASA's Cassini spacecraft passed by several of Saturn's intriguing moons, snapping images along the way. Cassini passed within about 60,000 kilometers (37,282 miles) of Enceladus and 28,000 kilometers (17,398 miles) of Helene. It also caught a glimpse of Mimas in front of Saturn's rings. In one of the images, Cassini is looking at the famous jets erupting from the south polar terrain of Enceladus.

Click on images for details
This image of Saturn's moon Helene was obtained by NASA's Cassini spacecraft on Jan. 31, 2011. Image credit: NASA/JPL/SSI
This image of Saturn's moon Enceladus was obtained by NASA's Cassini spacecraft on Jan. 31, 2011. It shows the famous jets erupting from the south polar terrain of Enceladus. Image credit: NASA/JPL/SSI
This image of Saturn's moon Mimas was obtained by NASA's Cassini spacecraft on Jan. 31, 2011. It shows the bright, icy moon in front of Saturn's delicate rings. Image credit: NASA/JPL/SSI


To see more raw images, go to http://saturn.jpl.nasa.gov/photos/raw/ and click on "Search Images."

{...}
orb is offline   Reply With Quote
Thanked by:
Old 03-07-2011, 10:27 PM   #42
orb
O-F Administrator
Ninja
 
orb's Avatar

Default Cassini Finds Enceladus is a Powerhouse

NASA / NASA JPL:
Cassini Finds Enceladus is a Powerhouse

March 07, 2011

PASADENA, Calif. – Heat output from the south polar region of Saturn's moon Enceladus is much greater than was previously thought possible, according to a new analysis of data collected by NASA's Cassini spacecraft. The study was published in the Journal of Geophysical Research on March 4.

Data from Cassini's composite infrared spectrometer of Enceladus' south polar terrain, which is marked by linear fissures, indicate that the internal heat-generated power is about 15.8 gigawatts, approximately 2.6 times the power output of all the hot springs in the Yellowstone region, or comparable to 20 coal-fueled power stations. This is more than an order of magnitude higher than scientists had predicted, according to Carly Howett, the lead author of study, who is a postdoctoral researcher at Southwest Research Institute in Boulder, Colo., and a composite infrared spectrometer science team member.

"The mechanism capable of producing the much higher observed internal power remains a mystery and challenges the currently proposed models of long-term heat production," said Howett.

Click on image for details
This graphic, using data from NASA's Cassini spacecraft, shows how the south polar terrain of Saturn's moon Enceladus emits much more power than scientists had originally predicted. Image credit: NASA/JPL/SWRI/SSI


It has been known since 2005 that Enceladus' south polar terrain is geologically active and the activity is centered on four roughly parallel linear trenches, 130 kilometers (80 miles) long and about 2 kilometers (1 mile) wide, informally known as the "tiger stripes." Cassini also found that these fissures eject great plumes of ice particles and water vapor continually into space. These trenches have elevated temperatures due to heat leaking out of Enceladus' interior.

A 2007 study predicted the internal heat of Enceladus, if principally generated by tidal forces arising from the orbital resonance between Enceladus and another moon, Dione, could be no greater than 1.1 gigawatts averaged over the long term. Heating from natural radioactivity inside Enceladus would add another 0.3 gigawatts.

The latest analysis, which also involved the composite infrared spectrometer team members John Spencer at Southwest Research Institute, and John Pearl and Marcia Segura at NASA's Goddard Space Flight Center in Greenbelt, Md., uses observations taken in 2008, which cover the entire south polar terrain. They constrained Enceladus' surface temperatures to determine the region's surprisingly high output.

A possible explanation of the high heat flow observed is that Enceladus' orbital relationship to Saturn and Dione changes with time, allowing periods of more intensive tidal heating, separated by more quiescent periods. This means Cassini might be lucky enough to be seeing Enceladus when it's unusually active.

The new, higher heat flow determination makes it even more likely that liquid water exists below Enceladus' surface, Howett noted.

Recently, scientists studying ice particles ejected from the plumes discovered that some of the particles are salt-rich, and are probably frozen droplets from a saltwater ocean in contact with Enceladus' mineral-rich rocky core. The presence of a subsurface ocean, or perhaps a south polar sea between the moon's outer ice shell and its rocky interior would increase the efficiency of the tidal heating by allowing greater tidal distortions of the ice shell.

"The possibility of liquid water, a tidal energy source and the observation of organic (carbon-rich) chemicals in the plume of Enceladus make the satellite a site of strong astrobiological interest," Howett said.

{...}
orb is offline   Reply With Quote
Old 03-19-2011, 01:14 AM   #43
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini Sees Seasonal Rains Transform Titan's Surface

March 17, 2011

PASADENA, Calif. -- As spring continues to unfold at Saturn, April showers on the planet's largest moon, Titan, have brought methane rain to its equatorial deserts, as revealed in images captured by NASA's Cassini spacecraft. This is the first time scientists have obtained current evidence of rain soaking Titan's surface at low latitudes.

Extensive rain from large cloud systems, spotted by Cassini's cameras in late 2010, has apparently darkened the surface of the moon. The best explanation is these areas remained wet after methane rainstorms. The observations released today in the journal Science, combined with earlier results in Geophysical Research Letters last month, show the weather systems of Titan's thick atmosphere and the changes wrought on its surface are affected by the changing seasons.

Click on images for details and larger versions
NASA's Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn's largest moon, Titan. Image credit: NASA/JPL/SSI
A huge arrow-shaped storm blows across the equatorial region of Titan in this image from NASA's Cassini spacecraft, chronicling the seasonal weather changes on Saturn's largest moon. Image credit: NASA/JPL/SSI
This series of images from NASA's Cassini spacecraft shows changes on the surface of Saturn's moon Titan, as the transition to northern spring brings methane rains to the moon's equatorial latitudes. Image credit: NASA/JPL/SSI


"It's amazing to be watching such familiar activity as rainstorms and seasonal changes in weather patterns on a distant, icy satellite," said Elizabeth Turtle, a Cassini imaging team associate at the Johns Hopkins University Applied Physics Lab in Laurel, Md., and lead author of today's publication. "These observations are helping us to understand how Titan works as a system, as well as similar processes on our own planet."

The Saturn system experienced equinox, when the sun lies directly over a planet's equator and seasons change, in August 2009. (A full Saturn "year" is almost 30 Earth years.) Years of Cassini observations suggest Titan's global atmospheric circulation pattern responds to the changes in solar illumination, influenced by the atmosphere and the surface, as detailed in the Geophysical Research Letters paper. Cassini found the surface temperature responds more rapidly to sunlight changes than does the thick atmosphere. The changing circulation pattern produced clouds in Titan's equatorial region.

Clouds on Titan are formed of methane as part of an Earth-like cycle that uses methane instead of water. On Titan, methane fills lakes on the surface, saturates clouds in the atmosphere, and falls as rain. Though there is evidence that liquids have flowed on the surface at Titan's equator in the past, liquid hydrocarbons, such as methane and ethane, had only been observed on the surface in lakes at polar latitudes. The vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate. Scientists suspected that clouds might appear at Titan's equatorial latitudes as spring in the northern hemisphere progressed. But they were not sure if dry channels previously observed were cut by seasonal rains or remained from an earlier, wetter climate.

An arrow-shaped storm appeared in the equatorial regions on Sept. 27, 2010 -- the equivalent of early April in Titan's "year" -- and a broad band of clouds appeared the next month. As described in the Science paper, over the next few months, Cassini's imaging science subsystem captured short-lived surface changes visible in images of Titan's surface. A 193,000-square-mile (500,000-square-kilometer) region along the southern boundary of Titan's Belet dune field, as well as smaller areas nearby, had become darker. Scientists compared the imaging data to data obtained by other instruments and ruled out other possible causes for surface changes. They concluded this change in brightness is most likely the result of surface wetting by methane rain.

These observations suggest that recent weather on Titan is similar to that over Earth's tropics. In tropical regions, Earth receives its most direct sunlight, creating a band of rising motion and rain clouds that encircle the planet.

"These outbreaks may be the Titan equivalent of what creates Earth's tropical rainforest climates, even though the delayed reaction to the change of seasons and the apparently sudden shift is more reminiscent of Earth's behavior over the tropical oceans than over tropical land areas," said Tony Del Genio of NASA's Goddard Institute for Space Studies, New York, a co-author and a member of the Cassini imaging team.

On Earth, the tropical bands of rain clouds shift slightly with the seasons but are present within the tropics year-round. On Titan, such extensive bands of clouds may only be prevalent in the tropics near the equinoxes and move to much higher latitudes as the planet approaches the solstices. The imaging team intends to watch whether Titan evolves in this fashion as the seasons progress from spring toward northern summer.

"It is patently clear that there is so much more to learn from Cassini about seasonal forcing of a complex surface-atmosphere system like Titan's and, in turn, how it is similar to, or differs from, the Earth's," said Carolyn Porco, Cassini imaging team lead at the Space Science Institute, Boulder, Colo. "We are eager to see what the rest of Cassini's Solstice Mission will bring."

{...}
orb is offline   Reply With Quote
Thanked by:
Old 03-22-2011, 11:34 PM   #44
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
Cassini Finds Saturn Sends Mixed Signals

March 22, 2011

Like a petulant adolescent, Saturn is sending out mixed signals.

Recent data from NASA's Cassini spacecraft show that the variation in radio waves controlled by the planet's rotation is different in the northern and southern hemispheres. Moreover, the northern and southern rotational variations also appear to change with the Saturnian seasons, and the hemispheres have actually swapped rates. These two radio waves, converted to the human audio range, can be heard in a new video available online at: http://www.nasa.gov/multimedia/video...ia_id=74390781

Click on images for details
This unique image from NASA/ESA's Hubble Space Telescope from early 2009 features Saturn with the rings edge-on and both poles in view, offering a stunning double view of its fluttering auroras. Image credit: NASA/ESA/STScI/University of Leicester
Mixed Signals from Saturn
(VIDEO)


"These data just go to show how weird Saturn is," said Don Gurnett, Cassini's radio and plasma wave science instrument team lead and professor of physics at the University of Iowa, Iowa City. "We thought we understood these radio wave patterns at gas giants, since Jupiter was so straightforward. Without Cassini's long stay, scientists wouldn't have understood that the radio emissions from Saturn are so different."

Saturn emits radio waves known as Saturn Kilometric Radiation, or SKR for short. To Cassini, they sound a bit like bursts of a spinning air raid siren, since the radio waves vary with each rotation of the planet. This kind of radio wave pattern had been previously used at Jupiter to measure the planet's rotation rate, but at Saturn, as is the case with teenagers, the situation turned out to be much more complicated.

When NASA's Voyager spacecraft visited Saturn in the early 1980s, the radiation emissions indicated the length of Saturn's day was about 10.66 hours. But as its clocking continued by a flyby of the joint ESA-NASA Ulysses spacecraft and Cassini, the radio burst varied by seconds to minutes. A paper in Geophysical Research Letters in 2009 analyzing Cassini data showed that the Saturn Kilometric Radiation was not even a solo, but a duet, with two singers out of sync. Radio waves emanating from near the north pole had a period of around 10.6 hours; radio waves near the south pole had a period of around 10.8 hours.

A new paper led by Gurnett that was published in Geophysical Research Letters in December 2010 shows that, in recent Cassini data, the southern and northern SKR periods crossed over around March 2010, about seven months after equinox, when the sun shines directly over a planet's equator. The southern SKR period decreased from about 10.8 hours on Jan. 1, 2008 and crossed with the northern SKR period around March 1, 2010, at around 10.67 hours. The northern period increased from about 10.58 hours to that convergence point.

Seeing this kind of crossover led the Cassini scientists to go back into data from previous Saturnian visits. With a new eye, they saw that NASA's Voyager data taken in 1980, about a year after Saturn's 1979 equinox, showed different warbles from Saturn's northern and southern poles. They also saw a similar kind of effect in the Ulysses radio data between 1993 and 2000. The northern and southern periods detected by Ulysses converged and crossed over around August 1996, about nine months after the previous Saturnian equinox.

Cassini scientists don't think the differences in the radio wave periods had to do with hemispheres actually rotating at different rates, but more likely came from variations in high-altitude winds in the northern and southern hemispheres. Two other papers involving Cassini investigators were published in December, with results complementary to the radio and plasma wave science instrument -- one by Jon Nichols, University of Leicester, U.K., in the same issue of Geophysical Research Letters, and the other led by David Andrews, also of University of Leicester, in the Journal of Geophysical Research.

In the Nichols paper, data from the NASA/ESA Hubble Space Telescope showed the northern and southern auroras on Saturn wobbled back and forth in latitude in a pattern matching the radio wave variations, from January to March 2009, just before equinox. The radio signal and aurora data are complementary because they are both related to the behavior of the magnetic bubble around Saturn, known as the magnetosphere. The paper by Andrews, a Cassini magnetometer team associate, showed that from mid-2004 to mid-2009, Saturn's magnetic field over the two poles wobbled at the same separate periods as the radio waves and the aurora.

"The rain of electrons into the atmosphere that produces the auroras also produces the radio emissions and affects the magnetic field, so scientists think that all these variations we see are related to the sun's changing influence on the planet," said Stanley Cowley, a co-author on both papers, co-investigator on Cassini's magnetometer instrument, and professor at the University of Leicester.

As the sun continues to climb towards the north pole of Saturn, Gurnett's group has continued to see the crossover trend in radio signals through Jan. 1, 2011. The period of the southern radio signals continued to decrease to about 10.54 hours, while the period of the northern radio signals increased to 10.71 hours.

"These papers are important in helping to explain the complicated dance between the sun and Saturn's magnetic bubble, something normally invisible to the human eye and imperceptible to the human ear," said Marcia Burton, a Cassini fields and particles scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., who was not involved in the work. "Cassini will continue to keep an eye on these changes."

{...}
orb is offline   Reply With Quote
Thanked by:
Old 04-08-2011, 04:35 AM   #45
orb
O-F Administrator
Ninja
 
orb's Avatar

Default

NASA / NASA JPL:
New Theory: Titan Shaped By Weather, Not Ice Volcanoes

April 07, 2011

Have the surface and belly of Saturn's smog-shrouded moon, Titan, recently simmered like a chilly, bubbling cauldron with ice volcanoes, or has this distant moon gone cold? In a newly published analysis, a pair of NASA scientists analyzing data collected by the Cassini spacecraft suggest Titan may be much less geologically active than some scientists have thought.

In the paper, published in the April 2011 edition of the journal Icarus, scientists conclude Titan's interior may be cool and dormant and incapable of causing active ice volcanoes.

"It would be fantastic to find strong evidence that clearly shows Titan has an internal heat source that causes ice volcanoes and lava flows to form," said Jeff Moore, lead author of the paper and a planetary scientist at NASA's Ames Research Center, Moffett Field, Calif. "But we find that the evidence presented to date is unconvincing, and recent studies of Titan's interior conducted by geophysicists and gravity experts also weaken the possibility of volcanoes there."

Click on images for details
Four moons huddle near Saturn's multi-hued disk. Image credit: NASA/JPL-Caltech/Space Science Institute
These side-by-side images obtained by NASA's Cassini spacecraft show the feature named Tortola Facula on Saturn's moon Titan. Image credit: NASA/JPL-Caltech/University of Arizona
These images compare surface features observed by NASA's Cassini spacecraft at the Xanadu region on Saturn's moon Titan (left), and features observed by NASA's Galileo spacecraft on Jupiter's cratered moon Callisto (right). Image credit: NASA/JPL-Caltech
These two images demonstrate how, over time, rain can carve landscapes into formations that look like aspects of volcanoes. The images are computer simulation models of landform evolution by Alan Howard at the University of Virginia. Image credit: copyright A. Howard


Scientists agree that Titan shows evidence of having lakes of liquid methane and ethane, and valleys carved by these exotic liquids, as well as impact craters. However, a debate continues to brew about how to interpret the Cassini data on Titan. Some scientists theorize ice volcanoes exist and suggest energy from an internal heat source may have caused ice to rise and release methane vapors as it reached Titan's surface.

But in the new paper, the authors conclude that the only features on Titan's surface that have been unambiguously identified were created by external forces -- such as objects hitting the surface and creating craters; wind and rain pummeling its surface; and the formation of rivers and lakes.

"Titan is a fascinating world," said Robert Pappalardo, a research scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and former project scientist for NASA's Cassini mission. "Its uniqueness comes from its atmosphere and organic lakes, but in this study, we find no strong evidence for icy volcanism on Titan."

In December 2010, a group of Cassini scientists presented new topographic data on an area of Titan called Sotra Facula, which they think makes the best case yet for a possible volcanic mountain that once erupted ice on Titan. Although Moore and Pappalardo do not explicitly consider this recent topographic analysis in their paper, they do not find the recent analysis of Sotra Facula to be convincing so far. It remains to be seen whether ongoing analyses of Sotra Facula can change minds.

Titan, Saturn's largest moon, is the only known moon to have a dense atmosphere, composed primarily of nitrogen, with two to three percent methane. One goal of the Cassini mission is to find an explanation for what, if anything, might be maintaining this atmosphere.

Titan's dense atmosphere makes its surface very difficult to study with visible-light cameras, but infrared instruments and radar signals can peer through the haze and provide information about both the composition and shape of the surface.

"Titan is most akin to Jupiter's moon Callisto, if Callisto had weather," Moore added. "Every feature we have seen on Titan can be explained by wind, rain and meteorite impacts, rather than from internal heating."

Callisto is almost the exact same size as Titan. It has a cratered appearance, and because of its cool interior, its surface features are not affected by internal forces. Moore and Pappalardo conclude that Titan also might have a cool interior, with only external processes like wind, rain and impacts shaping its surface.

The Cassini spacecraft, currently orbiting Saturn, continues to make fly-bys of Titan. Scientists will continue to explore Titan's mysteries, including investigations of the changes in the landscapes.

{...}
orb is offline   Reply With Quote
Thanked by:
Reply

  Orbiter-Forum > Far Side of the Moon > Spaceflight News

Tags
camera, images, saturn


Thread Tools

Posting Rules
BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts
Forum Jump


All times are GMT. The time now is 02:18 AM.

Quick Links Need Help?


About Us | Rules & Guidelines | TOS Policy | Privacy Policy

Orbiter-Forum is hosted at Orbithangar.com
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2019, vBulletin Solutions Inc.
Copyright ©2007 - 2017, Orbiter-Forum.com. All rights reserved.