
Orbiter Multiplayer Project V0.6.1 Page 1

ORBITER Multiplayer Project (OMP) V0.6.1

Friedrich Kastner-Masilko
February 28th 2012

1. INTRODUCTION ..2
2. OVERVIEW ..2
3. DOCUMENT HISTORY ...2
4. INSTALLATION ..3
5. CONCEPT ..3
6. SERVER ...6
7. PROTOCOL ...8
7. CLIENT .. 13
8. LIMITATIONS .. 19
9. CHECKLISTS .. 19
10. FAQ ... 20
11. Appendix A .. 22
12. Appendix B .. 24
12. Appendix C .. 26

Orbiter Multiplayer Project V0.6.1 Page 2

1. INTRODUCTION

This project is intended to bring multiplayer features to the great Orbiter – a free space flight simulator
created by Martin Schweiger, Ph.D. This is one of many attempts to accomplish the goal on both
LANs and WANs and incorporates the idea of a single “universe” server.

Development is still ongoing by means of an open source project hosted on Bitbucket, a free
collaboration platform that uses Git and Mercurial as version control systems. The project resides on
http://bitbucket.org/face/omp. There is also a fork for the Orbiter Racing League project on
http://bitbucket.org/face/orl-online. The later is considered the newest development at the time of writing this
document.

2. OVERVIEW

The project started out as experimental proof of concept. The following functions were implemented in
the first phase (pre-alpha):

• Basic networking functions (including session starting and joining, client management…)
• Communication protocol regarding vessel information exchange
• Synchronization mechanism
• Concept for the server-client-module approach to the problem of multiplayer interaction in

Orbiter

The alpha releases had basic extensions:

• Inter-client-communication functions – chat functionality (even radio transmission delay
simulation is possible)

• Trace mechanism to track vessels that are not in visible range
• A jump function to downsize simulation real time
• A simple orbital master system to provide cluster precision

The current beta phase is focusing on making those functions stable, and extending the project:

• Persistent vessel hosting (clients can leave the simulation and have their vessel propagated)
• Tunneling (connection possibilities for clients without full internet access)
• Flexible vessel creation and deletion
• Support for all vessel-specific recorded events (e.g. animations)
• Exchange of vessel-ownership
• Support for attachments and superstructures
• Space-time bubble concept to cope with time accelerations

For the next phases, possible extensions could be:

• Enhanced inter-client-communication functions (e.g. enhanced chat functionality, remote
access functions, voicechat)

• MFD providing information about other client’s vessels (i.e. the current trajectory of that
vessels, etc.) and overhaul system information (e.g. server up time, user list, vessel state
etc.). MFDs can act as chat interface, too.

• Vessel sharing, i.e.: many clients can control one vessel hosted by one of them. Huge vessels
with many instrument panels can be created and controlled by a team in realistic scenarios.

3. DOCUMENT HISTORY

Version 0.1
 September, 6th 2005 – Alpha release documentation.
 September, 7th 2005 – Added Checklists.
 September, 8th 2005 – Fixed typos and other errors.
 September, 9th 2005 – Added single – LAN – SNTP server information.
 September, 10th 2005 – Added jump feature
 April, 17th 2006 – Second alpha release documentation.

Version 0.6.1
 February, 28th 2012 – First beta release documentation.

http://bitbucket.org/face/omp�
http://bitbucket.org/face/orl-online�

Orbiter Multiplayer Project V0.6.1 Page 3

4. INSTALLATION

Download the package from http://bitbucket.org/face/orl-online/get/0.6.1.zip into a temporary location. Extract
the archive to a temporary folder, and copy the content of the single directory there (labeled with hash-
code and name) into a vanilla Orbiter installation, overwriting files during the process. Be sure to
enable the “use path information” feature of your favorite extraction tool.

These steps are not only tied to the above mentioned version 0.6.1. Instead, you can download any
version as similar package via http://bitbucket.org/face/orl-online/get/<name_or_hash>.zip . In
addition, it is recommended to use a vanilla install to reduce probability of addon-incompatibility.
However, you can use any Orbiter install you like, or install additional addons in parallel to OMP or the
ORL package.

The package usually has the following structure:

.. folder for checkpoint files and racing logs

.. configuration files for ORL

.. documentation for ORL

.. all necessary meshes for ORL

.. all Orbiter modules for ORL

.. home of the RaceCheckpointMFD and OMPClient plugins

.. .NET assemblies for OMP

.. Microsoft debug runtimes for debugging OMP

.. complete project source code

.. changes to stock headers and/or additional libraries

.. home of the ORL projects

.. OMP server and client sources

.. orbFlyBy sources – racing camera

.. sources for checkpoint pylons

.. RaceCheckpointMFD sources

.. scenarios for ORL and default Ascension

.. OMP Servers

.. for Linux – difference to Windows is in configuration and platform DLL

.. for Windows

.. textures for ORL

.. high resolution textures for ORL

Note that the server files (executables and configurations) can reside anywhere on your system. In
contrast to the previous releases, the configuration directory (/Config/) of an Orbiter installation is
necessary now to provide the sol system information needed.

5. CONCEPT

The concept of OMP is a client-server-based architecture with time-stamped stream communication.
The system uses SNTP timeservers to synchronize both clients and server to UTC. The 3 elements in
the concept – client, server and timeserver – can be seen in Figure 1.

Not shown in this sketch is the communication between clients. This communication is similar to the
UDP transmissions between client and server and resembles peer-to-peer networks in order to
downsize streaming latency.

Basically, there is one server hosting a “universe” for all connected clients. This “universe” is a specific
Orbiter configuration and will be negotiated with every client. I.e., every client must know with what
Orbiter configuration it has to start the simulation session.

Clients start a TCP session with the appropriate server and can check out the server environment
(users, information about vessels, scenario information etc.) similar to an IRC server. They actually
join the multiplayer session by sending an appropriate command followed by their name, password
and receiving port. The server responds with the reserved receiving port on the server side. The
clients can then start the actual simulation link.

The TCP session is also used for transmission of text information of any kind to keep UDP packet
sizes small. An open TCP session is therefore a must, if the right class (mesh) and name of the

http://bitbucket.org/face/orl-online/get/0.6.1.zip�

Orbiter Multiplayer Project V0.6.1 Page 4

neighbour vessels are to be seen, because this text information is transmitted via TCP rather than
UDP with an automated negotiation sequence.

As soon as a client joins the multiplayer session, it tries to synchronize the simulation’s MJD to the
appropriate space-time bubble’s MJD (currently there is only one globally available server bubble).
The server transmits this information by means of a “Keep Alive” UDP packet (KA). Concurrently, all
vessels hosted by the client are transmitted to the server by means of the absolute position w.r.t. the
appropriate gravitational body.

The server decides what vessel is in visible range of what other vessel and transmits the appropriate
information by means of a “Group Information” UDP packet (GI). It consists of a target vessel ID (the
vessel of the receiver client), a source vessel ID (the vessel of the sender client) and IP and port of the
receiver client the sender should send to. Each client processes its GI list and sends either an
absolute or a relative “State Information” UDP packet (SI) to the neighbour client. There are 5 reasons
to send an absolute SI instead of a relative one:

1. The source vessel is not in the same space-time bubble – regarding space – as the target
vessel. This is merely indicated by different gravitational bodies.

2. The target vessel is not available right now – if there was no absolute coordinates
transmission before, the target vessel is not visible to the client yet, therefore it is not possible
to calculate relative coordinates.

3. The source vessel velocity w.r.t. the gravitational body is smaller than 1000 m/s. This is
considered “non-orbital speed” and should be within the tolerance of the established
synchronization.

4. A jump command is running – check chapter 7. CLIENT .
5. The distance between source and target vessel is greater than the sub-visual range, or the

velocity difference between source and target is greater than 1000 m/s. The sub-visual range
𝑑 in meter is determined by:

• the current simulation’s viewport high ℎ in pixels,
• the current field of view 𝑓𝑜𝑣 in degree,
• the maximum size of both vessels 𝑠 in meter and
• the formular 𝑑 < 0,5 ∙ 𝑠∙ℎ

tan�𝜋∙𝑓𝑜𝑣360�
 . This estimates the user’s eye-monitor distance with

half a meter.

If a client receives an SI, it creates or updates the appropriate vessel with a generic name (based on
the global ID of the vessel) and the default class (see Figure 2). This default vessel will be exchanged
with the proper name and class later on, if the client was able to gather the information from the server
via TCP. However, SI information is only taken into account if:

1. the reference object is available,
2. it is either relative to another vessel or absolute and the client is within the space-time bubble

– regarding time – of the server and
3. the vessel to be updated is no superstructure slave.

If streaming of SI and GI is interrupted (either because the server is offline, the neighbour client is
offline or – less dramatically – the vessel is out of visible range) for more than 5 seconds, the
appropriate vessel is removed.

Figure 1 - OMP default vessel

Orbiter Multiplayer Project V0.6.1 Page 5

Figure 2 - OMP concept

Orbiter Multiplayer Project V0.6.1 Page 6

6. SERVER

The main element in the OMP concept is the single server. The server is a Windows command line
executable that can be run on any machine with Windows 2K, XP, Vista or Win7 operating system
with .NET framework 2.0 installed, as well as on any POSIX machine with Mono framework 1.2.6 or
higher installed. The executable uses a console configuration file, which location and name can be
specified via command line argument.

A typical start command (on Windows) would be:

C:\Orbiter\Server\Windows>ServerConsole.exe console.xml

or, on POSIX machines

/opt/orbiter/Server/Linux>mono ServerConsole.exe console.xml

If no argument is given, “server.xml” (in the executable directory) is used as default server
configuration file and “server.log4net” (also in the executable directory) is used as default logging
configuration file. If the default files or the given console configuration file cannot be found, the server
exits with an error message.

The console configuration file is in XML format and defines not only the location and name of both the
server and the logging configuration files, but also additional settings for the command line server
itself. The syntax is depicted in Figure 3, showing the XML scheme in graphical form.

The server configuration file is in XML format, too, defining all necessary parameters of the server.
The syntax is depicted in 11. Appendix A. This file can be edited while the server is running. Changes
will automatically be detected, and the server reloads the configuration.

The logging configuration file is again in XML format, providing a quite flexible logging facility through
Apache’s log4net framework. Please check the framework’s project page at http://
http://logging.apache.org/log4net for details on the syntax, or consult the distributed server.log4net example
files for Windows and Linux. The following loggers are used by the system (note: the character ‘#’ in
names is a placeholder for whitespace):

General server and database log (info, warn, error and debug – the later prints unique ID

collisions and/or misses)

Chat Chat log (only info level)

#TCP TCP subsystem log (info, error and debug – the later prints raw data with escape codes)

#UDP UDP subsystem log (error and debug – the later prints raw data in hexadecimal format as
well as caught exceptions)

SNTP NTP subsystem log (info and error)

VISI Visibility database log (only error level)

#WEB Web server log (error only)

As soon as the server application has started, it begins to synchronize the local (virtual) clock with
UTC via a simple NTP algorithm (not the one used in “real” NTP applications!). This algorithm works
by means of pinging a random server from the specified set with SNTP requests in the defined
sampling interval (typically 2s). If the server fails to reply, its fail count is increased. If the fail count hits
a specified threshold, it is blocked and suspended for a defined amount of hit counts. A specified
amount of samples is taken for each resynchronization step. After this step, the measured clock skew
will be displayed together with some statistical information. Please don’t panic now… your systems
clock will NOT be set to UTC, just an internal virtual clock is set properly.

http://logging.apache.org/log4net�

Orbiter Multiplayer Project V0.6.1 Page 7

Figure 3 - Console configuration file XML scheme

Concurrently, the server loads the specified solar system configuration from the defined Orbiter
installation. All celestial objects are assigned a unique ID and loaded into a database that gets
distributed to the clients.

The server then listens on the defined ports for client interaction. Usually, the command line server
only logs information to screen and does not provide much interaction, but for maintenance purposes,
there are some keys with special meanings. If you press these keys in the command line, the following
happens:

C Starts an editor to edit the server configuration file. This defaults to calling notepad.exe.

Be advised that changes to the file cause the server to reload the configuration.

G Triggers the .NET garbage collector to get rid of released IDs. Usually, this is not
necessary, as the system does this automatically.

K Toggles the server lock. If the server is locked, no new TCP connection can be made. This

is useful in closed sessions to keep unwanted traffic out.

Orbiter Multiplayer Project V0.6.1 Page 8

L Starts an editor to edit the logging configuration file. This defaults to calling notepad.exe.

Be advised that changes to the file cause the server to reload the logging configuration.

Q Suspends screen logging and prompts to enter the administrator password to shutdown
the server gracefully

S Starts an administrator shell by means of the PuTTYtel application.

If you specify a web port in the server configuration file, the HTTP server is started. It lets you browse
through the status of the server to check connections, users and objects. The pages served are rather
spartanic in style, but easy to parse by both machines and people, as can be seen in Figure 4.

7. PROTOCOL

The communication between every client and the server starts out with the TCP session protocol. This
protocol was designed to be human readable, both for debugging and extensibility purposes. Thus,
the best way to explore the protocol is via Telnet.

You can connect to your server from any machine in the
target network (even the machine running the server), or
by means of using the standard telnet client that comes
with the distribution (puttytel.exe) by pressing “S” in the
server window. The server is prompting the specified
welcome message and – if you use the server machine to
connect – tells you that you are in an administrator shell.

You can start entering commands now, each
one finished by pressing <ENTER>. If you
enter a wrong command, you will get a
syntax error message (with a pointer
indication where the error starts). The help
command will show you a comprehensive list
of all available commands.

Figure 4 – Integrated web server

Orbiter Multiplayer Project V0.6.1 Page 9

If you enter a command, the command arguments are checked and a
syntax error message is printed in the case of a missing or wrong
argument. If the command is valid, it is processed and information is
printed (e.g. checking the server version):

Standard protocol commands:

(as)sign <user>

<password>
[<port>]

With this command, you can assign a shell to a specific user
with the given password and optional port. It is automated and
should not be used manually. However, this command can be
used to obtain administrator privileges to remote control the
server. For this purpose, give username “admin” and the
administrator password.
The server confirms your assignment by replying with an
appropriate message.

ip [<address>] This sets the IP address the current shell should be dedicated

to. Every further action you take will be addressed to this IP.
Without an address given, the current remote and set IP will be
replied. The special IP “server” assigns the shell as “hair-
pinning” client, providing support for clients inside the public
server’s LAN. This is necessary whenever such clients have to
connect to the public server using the private IP of it due to a
NAT without hairpinning support.

echo [on | off] This command switches echoing of characters on or off or

shows the current setting without options given. This is useful if
you use a telnet client without local echo or simply want to
check back the text you send to the server. Echo off is default.

quit | exit To stop the server connection gracefully, use this commands.

(j)oi(n) <user> <port> <password> After sending this command, you join the server with the given

user name and port – at which your client should listen for UDP
packets – and secures it with the password.
The server now confirms the joining by replying a port number
the client should send SIs to – and immediately starts to send
KAs to the given IP and port. If there already is a client
connected with the current IP on the specified port, an error
message will be replied. In addition, an invalid port number will
be answered with an error message, too. A full server will also
trigger an error. This is automated and should not be used
manually.
This command automatically assigns the shell to the newly
joined port. If zero is used for the port, the server enters hole-
punching mode and waits for the first client packet to arrive. It
then sends back to the same port it received from (and with the
same port it received it).

Orbiter Multiplayer Project V0.6.1 Page 10

(l)ea(v)e <user> <password> After sending this command, you leave the server. The user

name and password authorizes your leave-request. Only
authorized commands will be accepted, otherwise an error
message will be returned. The server now confirms your
leaving by replying an appropriate message – and immediately
stops every activity to the IP and port. This is automated and
should not be used manually. However, this command may be
useful in the event of a failed connection procedure to eliminate
zombies.
This command automatically clears the shell’s assignment.

(tr)ac(k) [off] [<ID>] This command is especially important during a multiplayer

session, because you can use it to track a vessel that is not in
visible range. Since an OMP client only creates and displays
vessels in visible range, it would be hard to launch to e.g. the
ISS, because your MFDs cannot target a non-existing vessel.
Therefore, the track command has been implemented.
You specify the vessel you want to track by giving its ID. You
can get this unique number for a specific vessel of a specific
client by examining the reply of the list command. If the vessel
exists, the server sends position information periodically to your
client, but no information about name or class of the vessel, so
you will only see the default vessel and a generic vessel name.
But you can target this vessel with your instruments and plan
maneuvers to get into visible range.
As soon as you are in visible range to a tracked vessel, you will
see 2 vessels in (almost) the same position. To switch off
tracking, simply enter “off” together with the vessel ID.
If you do not an ID or “off”, the current tracking list will be
displayed. You can add multiple trackings and delete all
trackings by means of using “off” without any vessel ID.
This command only works with a proper shell assignment. If
your shell is not assigned to any port (either via joining or
assigning), you will receive an error message.

(ch)ec(k) [(f)iles |

 (s)ystem |
 (t)ime |
 (v)ersion |
 (v)e(s)sels |
 <name> |
(l)ocation [<ID>] |
(g)bodies]

With this command, you can list the information for scenario
files (DEPRECATED), the name of the server’s solar system,
its current MJD, its version, the supported vessel classes with
mapping/redirections, information about a specific object name
(not implemented yet), location information and the object
database. All commandos are used during the automated
startup procedure and should not be used manually – it should
not do any harm to the system, though.

(l)i(s)t [(a)ll |

(o)wn |
(c)urrent |
<name>]

[(u)sers |
(ob)jects]

[(d)etailed]

As stated in the track command description, this command is
useful to retrieve information about currently connected clients
and their vessels. Depending on the options, clients will be
listed with nick name, IP address and receiver port. Every
vessel of a client will be listed with vessel ID, name and class
name. There are currently 4 essential differences:

1. “all users” and “all users detailed” shows a nice list of
all clients and their vessels,

2. “own users detailed” shows a list of all clients with the
same IP address as the shell,

3. “own users” is like the detailed version, but suitable for
automation (ugly to read)

4. everything else doesn’t show anything.

This command is prepared to be the information center for all
kinds of information in later versions.

Orbiter Multiplayer Project V0.6.1 Page 11

(h)elp This command shows a list with descriptions of all available

commands.

REQST <ID> This command is used internally for vessel information

transmission. Information for ID is requested. It is automated
and should not be used manually – it should not do any harm to
the system, though.

GINFO <ID> <1> <2> <3> This command is used internally for vessel information

transmission. It is automated and should not be used manually.

(t)alk:<message> | me:<message> These commands provide the chat functions in the system. The

message will be broadcasted to every online client’s shell,
prefixed with a “[<name or IP>]” in the case of talk and
embedded in the brackets in the case of me (emoting). The
default shell setting uses “t:” as prefix, so you don’t have to type
it every time you want to say something in the OMP client. Note
that this string will be formatted with the prompt format at
receiving clients’ side.

RADIO:<message> This command broadcasts the complete message to every

client (including the RADIO prefix!). It is used by the internal
radio signal delay simulation and should not be used manually.

(n)ic(k) [<name>] You can set or clear the nickname used in the current shell with

this command. If the nick is cleared, the IP is used as prefix.

(obs)erve [off] [<ID>] Similar to the track command, this enables you to observe

other vessels without them being in actual visible range to one
of your vessels. Other than the track command, here the class
and name information is exchanged and you’ll get the state
updates directly from the vessel’s host. This command is
intended to be used by mere observers that do not host vessels
on their own, but just want to watch the session. In addition to
the observed vessels itself, every vessel that is in visible range
to it is automatically observed, too. Like with track, the “off” can
be used to either selectively turn off an observation or the
complete list. Without ID or “off”, the command lists all current
observations.

(pr)ompt <Format> This command sets the prompt format of the shell. It supports

.NET format specifiers, with index 0 (“{0}”) replaced with the
message and index 1 (“{1}”) replaced with the date-time (based
on the NTP algorithm’s UTC) of the message. Check
http://msdn.microsoft.com/en-us/library/aa720088%28v=VS.71%29.aspx for
information on .NET format specifiers, or this nice blog entry:
http://blogs.msdn.com/b/kathykam/archive/2006/03/29/564426.aspx.

http://msdn.microsoft.com/en-us/library/aa720088%28v=VS.71%29.aspx�
http://blogs.msdn.com/b/kathykam/archive/2006/03/29/564426.aspx�

Orbiter Multiplayer Project V0.6.1 Page 12

Administrator protocol commands:

log cut OBSOLETE

log [<flags>] OBSOLETE

sync reset | status | data Currently only the status subcommand displays SNTP server

information list. Both reset and data are obsolete.

(d)ump [

 (gl)obals |
 (c)o(n)nections |
 (cl)ients |
 ((l)og <chars> [last |

<time>])
]

Displays
• global IDs,
• connections or
• clients as well as some statistics.
Without any options, this command would perform a logging
dump step, but all logging dumps are obsolete now with the
log4net framework in place.

mjd (st)atus Writes out a timestamp (local and UTC) as well as the current

MJD.

mjd (r)eset <date> <time>
<confirm>

Sets the MJD of the server to the specified date and time. As
confirmation either “1”, “y” or “Y” will be accepted. If no
confirmation was given, the system simply translates the date
and time into MJD and prints it out. ATTENTION: Use quotes
to ensure date (“YYYY.MM.DD”) and time (“HH:MM:SS”) is
parsed correctly.

kick <ip> Closes all TCP connections from the specified IP address.

kickban [off] [<ip>] Kicks the specified IP and adds it to the ban list, or remove the

IP from the list if used with "off" - no argument will display the
list.

Orbiter Multiplayer Project V0.6.1 Page 13

7. CLIENT

The client is an Orbiter plugin that can be activated in Orbiter’s launchpad by going to the Modules tab
page and checking the OMPClient entry within the Multiplayer section. You will immediately see the
OMP client window in launchpad mode (see Figure 4). In this mode (indicated by the “universe”
background in the status tab), there is no possibility to close the window by means of a button. The
only way to close the window is closing Orbiter itself.

As soon as you activate the client, the first entry in the scenario selection control will be selected and
the control itself will be disabled. Additionally, Orbiter’s launch button turns to “Connect Orbiter” and
the “Start paused” option will be disabled, too. This ensures that the user cannot start a wrong
scenario for a given OMP session. If you deactivate the OMPClient, the controls will be enabled
again, but only after a restart of Orbiter.

Figure 5 - OMPClient module in launchpad mode

Similar to the server application, the client plugin needs a configuration file – but this time the name
and location of the file is fixed: it must be in the same place as the plugin DLL and named
OMPClient.xml. It is in XML format, with the syntax depicted in 12. Appendix B.

Like with the server, there is also a logging configuration file, again in XML format using the log4net
framework. Its location and name is fixed to the same place as the plugin DLL and OMPClient.log4net.
The following loggers are used by the system (note: the character ‘#’ in names is a placeholder for
whitespace):

General client and database log (info, error and debug – the later prints various

information about session status)

Chat Chat log (only info level)

#TCP TCP subsystem log (info, error and debug – the later prints raw data with escape codes)

#UDP UDP subsystem log (info, error and debug – the later prints raw data in hexadecimal
format)

SNTP NTP subsystem log (info and error)

#CLK Visibility database log (only error level)

#WEB Web server log (error only)

Orbiter Multiplayer Project V0.6.1 Page 14

Besides the launchpad mode, the client window can be in simulation mode, i.e., if you start an actual
simulation and the render viewport opens (either in full-screen or windowed mode), the client window
will switch to simulation mode and vice versa. These modes have some things in common, other
things differ slightly:

• Both modes have the main layout elements Settings tab control (tabs), Command line (CL)
and Text window (TW).

• Both modes have the tabs in the upper section, the CL in the middle and the TW at the bottom
of the client window.

• In both modes, the tabs is fixed in width and height, the CL is always one line but stretchable
and the TW is freely sizeable.

• In both modes, the client window has a minimum height and width – the tabs, the CL and one
line of the TW must be visible.

• Both modes uses automatic tab splitting, i.e., if you make the client window broader, not the
size of tabs changes, but you will have more tabs displayed concurrently as the space allows
it.

• In launchpad mode, the tabs are at the top of the control, in simulation mode they are at the
bottom. Don’t ask why…

• In simulation mode, there are 2 additional buttons to the right of CL: one with a vertical arrow
head on it, and one with an X. The later does what one would expect – it closes the client
window. You can reopen the window via Orbiter’s custom dialog feature. The arrow shifts the
window in such a way, that the tabs are not visible anymore – additionally, the selected
autohide mode will become active (see Shell tab page description).

• In launchpad mode, you can move and resize the window as you wish, in simulation mode,
the window is fixed to the upper side and middle of the screen. If you resize the window in the
later mode, the position will be maintained accordingly.

The next sections describe the layout elements in detail:

Status tab page:

This tab shows some statistics in the upper part.
The numbers to the right are actual measurements
of the maximum (upper), minimum (lower) and
median (middle) value of the real-time clock skew
w.r.t. UTC of the current machine. Normally, this is
between 800 and 20 us/s in both directions.
Additionally, the middle numbers show the
maximum (upper), minimum (lower) and average
(middle) value of the current machine's simulation
time offset w.r.t. the server's simulation time. On the
lower part of this tab, there are some animated icons
that represent the current status of the system.
Background of this "picture" is a universe if the
program is in launchpad mode and a space shuttle
on orbit in simulation mode. On the left side, the
planets of the Sol system are displayed, if a TCP
connection is active. On the right side, there will be:
• a solid clock icon, if everything's OK within the
synchronization system,
• a fading clock icon, if an error occurred on an
SNTP sampling point and

• no clock icon, if the synchronization stopped completely due to some fatal error.

Orbiter Multiplayer Project V0.6.1 Page 15

Network tab page:
On this tab you can enter the server's IP address as
well as its receiving TCP port. User and password
settings are important for the automatic startup
procedure – do not leave them blank. For the
analysis of the client connection to the internet,
there is a button that initiates the STUN protocol.
After pressing this button, it takes about 5 seconds
for the results to appear in text form in TW. Without
any checkboxes activated, the standard connection
method uses a hole-punching technique to make
the client receive UDP packets. However, this is not
always successful, depending on your Internet

access and relation to the server machine – the STUN analysis gives hints in this regard. If it is not
working, the Custom port checkbox enables receiving through a specified port. If the client is in the
same LAN as the server machine that hosts a public server, the Server-LAN checkbox can be used.
With the later 2 options, the user has to setup a proper port-forwarding from the router to the client
machine in order to receive UDP packets.

Timing tab page:

In the upper part, none of the values do something
useful yet. On the lower part, the button "Status"
generates a report summarizing the status of the
SNTP servers in use (BLOCKED means that there
have been several errors connecting to this server).
If your network connection is unreliable, or even
broken, it may happen that all servers are blocked.
The “Reset” button is reserved for this situation, but
not implemented yet.

Shell tab page:

Here you can specify the shell buffer size, the suffix
that will be concatenated behind your message, the
prefix string that will be concatenated in front of your
message (default is “t:” for sending normal entries
as chat messages) and special characters for
escaping prefix string (e.g. server commands) and
escaping to client commands. In this tab you can set
the auto-hide behavior as well. Whenever the arrow
button (to the right of the shell input box) points
down, the dialog box will hide according to this
setting if the mouse leaves the dialog area, just like
your windows taskbar do if you set it to auto-hide

(see Figure 5). The "Clear" button clears the shell output window.

Figure 6 – Auto-hide feature

Orbiter Multiplayer Project V0.6.1 Page 16

Logging tab page:
This tab consists of a log output window and a
textbox for buffer size setting, a button to clear
the log and 10 checkboxes that represents the 10
built-in levels of logging. Right now there are 8
levels implemented:
0 .. Console messages
1 .. General messages
2 .. TCP messages
3 .. UDP messages
4 .. SNTP messages
5 .. DEBuG messages
6 .. CLocK messages
7 .. GarbageCollector messages

Every level can be switched on and off, respectively (default is 0,1 and 2 on, rest off).

Command Line:

If you switch focus to the client window via mouse movement, at first the CL gets the focus. You can
enter text in the command line, delete it again and copy & paste text, as long as you do not enter a
Carriage Return. As soon as you do that, the entered text will be passed to the internal parser as
command. In addition, you can press up and down arrow keys to browse the history of previously
entered escaped lines (server and/or client commands).

According to the content and the settings in the Shell tab page, the command can be interpreted as:

• text to be sent to the connected server via TCP or
• a shell command (default prefix is ‘%’).

In the later case, the following commands are possible:

Keyword
(case
sensitiv)

Arguments
(Type [Unit])

Description

Clock None Toggles the clock controller on and off. This way you can turn off time

compression mechanism if you are connected to a server – highly
experimental!

Echo None Toggles the local shell echo on and off – similar to the server side echo. It

is off by default.

Irc None Toggles the automatic IRC reply (ping/pong mechanism) on and off. This is

useful if you connect to an IRC server (some may remember…). It is off by
default – OBSOLETE.

Event None Toggles the event transmission system on and off. It is off by default.

State None Displays information about internal settings.

Mjd Integer [s] Simulates a server MJD with the given offset to the current client MJD.

Useful for tuning the PID algorithm if clock controller is off.

Kp Float [1] Sets the PID proportional factor.

Kd Float [1] Sets the PID integral factor.

Ki Float [1] Sets the PID differential factor.

Eps Float [s] Sets the PID tolerance epsilon. Below this threshold, the clients MJD is

considered synchronized.

Orbiter Multiplayer Project V0.6.1 Page 17

Delay Integer [ms] Sets the state information sender interval. This is the minimum time

between packets sent out.

Block Integer [ms] Sets the state information sender block interval. This is the minimum time

between packet blocks. A packet block

Idle Integer [steps] Sets the state information sender idle steps.

Rint Integer [ms] Sets the resynchronization interval – the time between each SNTP

sequences for clock skew analysis.

Tdel Integer [ms] Sets the SNTP sample delay – the time between each SNTP sample

within a resynchronization sequence.

Radio None Toggles radio transmission delay simulation on and off. This is a proof-of-

concept feature and implements a client-side solution to the delay
simulation problem. It is off by default.

Freq Float [Hz] Sets the radio transceiver. If delay simulation is on, a message will be only

displayed at the proper time when it was sent at the currently selected
frequency, just the same as it is in real life.

GCD Integer [ms] Sets the garbage collector sample time. This is NOT the timeout value for

idle streams (fixed to 5 seconds for now), it’s just the interval of garbage
collector checks.

jump to Integer [ID] Jumps the focused vessel to the vessel specified by the given ID number.

This must be a currently tracked vessel (see track server commando).
After the jump, tracking will be switched off automatically.

Master Integer [ID] Sets the relative state vector master for the focused vessel to the specified

ID number. This is useful in orbital clusters, were many clients want to see
each other in the correct position. All clients must agree to a single master
and set this value appropriately to maximize the cluster experience. No
harm will be done to the system if this is not used in clusters, just relative
positions can be wired. If the specified master is not in range, normal
transmission will be used.

Version Displays the version of the client.

List Lists the index of all locally displayed vessels.

Add Integer [ID] Adds the specified locally displayed vessel to the server list.

Del Integer [ID] Deletes the specified locally displayed vessel from the server list.

Help Displays the help information.

Text window:

The text window displays all received or echoed characters as they are - with two exceptions: every
Carriage Return will be exchanged with Carriage Return followed by Line Feed – as this is the
standard windows textbox line break – and every non-printable character will be displayed as pipe
(‘|’). The window supports automatic word wrap and can be scrolled (with the given buffer size as
history).

Orbiter Multiplayer Project V0.6.1 Page 18

Login:

In this version, the client performs all steps necessary for a proper OMP session by the means of an
automated logon procedure:

1. The user provides the server address and port as well as the client

connection options together with a user name and password (both
must not be empty).

2. After clicking the connection button (the same as Orbiter’s launch button), the procedure connects

to the server via TCP. If this fails, the procedure stops, but leaves the TCP connection running to
let the user fix the problem manually, like he would do in a simple text client. I.e. you can still enter
chat messages and examine the environment.

3. The procedure joins the user as a new client. In previous (and probably later) versions, it scanned

the user list for an already connected session and used it when found. In this version, however, it
is not necessary, as every disconnecting client will automatically leave, too.

4. The available vessel classes are then scanned and presented in a

dialog for the user to choose from. To continue, press <ENTER> in the
edit field.

5. A scan for the available locations will be done and a dialog for the user

to choose a location will be presented. To continue, double-click a
location. If no locations are defined, the system will simply continue to
load the single scenario definition of the server.

6. A proper scenario with the correct MJD will be generated.

7. The Orbiter simulation starts fully automated.

8. The UDP transceiver starts and immediate MJD synchronization begins...

Logoff:

Logging off is automated, too:

1. If the user closes the simulation window, the procedure first stops the UDP transceiver.

2. It then stops the Orbiter simulation and returns to the launchpad.

3. At last, the OMP client window opens in launchpad mode and TCP connection stops.

Orbiter Multiplayer Project V0.6.1 Page 19

8. LIMITATIONS

Since this is an alpha release, probability is high for bugs and pitfalls for both server and client. If you
encounter any problems, please feel free to post them on the Orbiter forums or email it to me
(face@snoopie.at). At this point I know of several problems, that I have not investigated far enough to
provide a solution for:

• Massive multiplayer capabilities are still to be tested – I simply do not have the resources to
do that on my own. It would be interesting how the system behaves with 50 or more orbinauts
hanging around at the same time.

• Security and stability – at the moment there is only little security available. Since many
features are still experimental (e.g. event hooking and forwarding, animation support, etc.), it
is no exception to see a CTD with the client running.

• Threading concerns – because Orbiter seems to be a single threaded application, but the
client plugin is using multithreading where possible, there may be race conditions sometimes
somewhere…

9. CHECKLISTS

This chapter will give you step-by-step instructions to set up a simple multiplayer session from scratch.

Single Client Test Session:

1. Make sure to install the OMP package properly. Use vanilla Orbiter installs and check for .NET
2.0 framework installed.

2. Make sure your Windows OS supports TCP/IP connections.
3. Make sure your Internet connection is a direct one WITHOUT a HTTP proxy. Proxy support is

not included right now.
4. Start Windows Explorer and go to your Orbiter base folder. Go to the /Server/Windows/

directory and double-click the “ServerConsole.exe” file. Your server should start now,
showing you a simple console window with content like seen in this document. The server
immediately starts to synchronize the internal virtual clock, so on machines with activated
firewall, you may get a firewall message, if the server application should be allowed to connect
to the internet. Click “Yes”, if you want the server to work, otherwise the application can not
connect to a time server in order to synchronize to UTC.

5. Start Orbiter, go to the Modules tab and activate the OMPClient plugin. If you do not know
how to do that, consider taking a look into Orbiter’s really fine manual or look at various
tutorials found on the Orbiter forums. You should now see the client window. The client is
starting synchronization immediately and therefore a possibly activated firewall will pop up a
confirmation dialog. Again, click “Yes” to ensure synchronization to UTC.

6. Enter the IP address OR host name of your machine (that is: where the server resides) OR –
in our simple test setup – 127.0.0.1 for the local host in the Network tab page of the client
window. Click the Connect button in Orbiter’s main window.

7. A dialog will show up in the text window area, offering you an edit field and an empty list. You
have to enter a name in the command line control for the vessel and to press ENTER within
the command line control. If you leave the name blank and just press ENTER, your vessel will
get your user name.

8. The next dialog will show you some locations your vessel can start from. Choose one by
double-clicking on it. Orbiter will now start up. As soon as the render window is open, your
simulation starts to synchronize MJD with the server.

9. As soon as your client caught up to the server’s MJD (you can use ‘R’ and ‘T’ as usual to
accelerate faster – the clock controller will gradually decrease the acceleration as needed),
you are online. You can now track your own vessels and play around with the client’s or
server’s functions.

mailto:face@snoopie.at�

Orbiter Multiplayer Project V0.6.1 Page 20

Multi Client LAN Test Session:

1. You need at least 2 machines connected via LAN to be able to run this kind of session.
2. Go through all steps of the Single Client Test Session for the server hosting machine, but be

sure to set the firewall to allow UDP port 3000-3499 as well as TCP port 1515 for incoming
messages.

3. On the second machine, go through the steps there, too, but skip step 4. Also enter another
user name in the Network tab page.

4. As soon as both clients are online (i.e., caught up to the server’s MJD – takes up to one
minute…), you will see the opposite client’s vessels (if they are in the same area, of course).

Internet Server Startup:

1. You need to have a machine directly connected to the internet and allowed to establish TCP
and UDP connections. A static IP address is not necessary, but recommended (so you can
keep the server running as long as you wish).

2. Go through steps 1-3 of the Single Client Test Session, but before starting the server in step
4, be sure to enter the correct Internet IP addresses in the server.xml file (instead of
“localhost”). Also, be sure to setup you firewall/router to enable UDP port 3000-3499 and TCP
port 1515 for incoming messages. Most probably, you’ll have to establish port-forwarding to
your server machine in order to succeed.

3. Change the admin password in the server.xml, too (you don’t want others to manipulate your
server, don’t you?). Be sure to save the server.xml and continue with step 4 of the Single
Client Test Session. Of course you can skip the client startup altogether if you only want the
server running, but often you want to join the users flying on your server, too. In the later case,
continue with client startup, but set the connection options appropriately in the Network tab
page. It is highly probable that you’ll have to use the Server-LAN option in order to see other
clients. If you’re seen by others, but can’t see anyone yourself, chances are you either forgot
the Server-LAN option, your chosen custom port is not forwarded to your machine, or the
address for the server is wrong.

Internet Client Startup:

1. You need to have a machine directly connected to the internet and allowed to establish TCP
and UDP connections.

2. Go through the steps 1-3 and 5 of the Single Client Test Session. Be sure to enter the correct
IP address in Server IP and Server Port number in the Network tab page. Click the STUN
analysis button and wait for the result to be shown in the text window. Follow the suggestions
there to set your connection options properly. Then continue with the steps.

3. As soon as your client is online, you will see the other vessels, if in visible range. If not, you
can use the list command to see who is online and what vessels are connected. To use it,
enter “\list” (note the backslash) in the edit field of the OMP window and press ENTER.

10. FAQ

This chapter gives answers to frequently asked questions.

Q: I’ve started in fullscreen mode and switched to the desktop (to do something). After switching back,
I get a white screen with only the OMPClient dialog showing up. How can I get my cockpit back?
A: Just close the OMPClient dialog by clicking the „X“ button to the right of the CL. You can get it back
by pressing Ctrl-F4...

Q: I’ve joined a simulation by choosing a „Landed“ location and jumped right to a orbiting craft. But it
seems like my velocity is not adjusted appropriately. What to do now?
A: This is due to the fact, that the Orbiter core cancels every velocity relative to the planet’s surface
while the vessel is still in „Landed“ mode. Despite the jump, the vessel remains in „Landed“ mode until
you apply a small force, e.g. hover thrust. You can either apply the small hover BEFORE the jump, or
apply the hover AFTER the jump and jump again.

Q: Where’s the landing gear on my buddy’s vessel?
A: Animations are not supported yet.

Orbiter Multiplayer Project V0.6.1 Page 21

Q: My buddy sees a third vessel in a different position. What’s wrong?
A: Vessels in orbital clusters must agree to a master and set this by the means of the „%master <ID>“
command. Vessels at ground may suffer from a poor UTC and/or MJD synchronization. In this case,
just wait for the clients to converge (can take up to 5 minutes with default settings).

Q: How do I run a local server without internet access for NTP synchronization?
A: You can specify only one SNTP server. Every client in the LAN session must specify this SNTP
server, too, so everyone is running with the same – probably wrong – “UTC”. It’s the common time
base that matters, not the name of the time base. If you use a W2K machine as server, you can easily
use the built-in functionality – you have to activate it first, though (see for more information:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnw2kmag01/html/TimeWin2K.asp). If you use an XP
machine, usually the built-in SNTP server is already activated. So, enter the machine’s address in the
local clients at the single Server element within the NTP element in the OMPServerConfiguration
root of the client configuration XML, e.g.:
...
<Server Address="192.168.0.1" />
...

In the server configuration, just delete all Server elements. This will disable the server’s NTP
algorithm, as the local time is “UTC”, anyway. If you want to set up an internet server, best practice
currently is to define only 1 NTP server: the official NTP pool server at pool.ntp.org .

Q: Can I run the server on Linux in the background?
A: Yes, it is possible with e.g. “mono ServerConsole.exe console.xml > /dev/null &” . The missing stdin
will suspend the input loop, but the operational threads will still run. Additionally, you can modify the
log4net configuration to not use ConsoleAppenders, but only e.g. FileAppenders or even
TelnetAppender to send the logs to different sinks then the console.

Q: I can’t get beyond 0.1x time acceleration, although I’m connected to the server.
A: You are not fully connected to the server. This is a symptom of missing incoming UDP packets due
to firewall/router/ISP blocking. You can check this by means of examining the “\list” response. Most
probably you’ll see your name there with an entry like “no UDP!”. This shows that your UDP packets
got through TO the server, but packets FROM the server to you don’t. Although the hole-punching
method should deal with these troubles, it is no silver-bullet and can fail, especially with cheap and/or
old network-hardware along your route. Of course, very restrictive setups can have that effect, too. For
this, the STUN analysis got implemented. Use it to determine your connection type and follow the
suggestions.

Q: How can I port-forward my UDP ports through my router?
A: Answering this question for every possible network/vendor/hardware/version-combination you might
have would fill books. Therefore, it is only possible to give hints like these:

1. Check your router’s manual.
2. Most routers have web interfaces running on the routers IP.
3. Search for keywords like “services”, “servers”, “port-forwarding”, “NAT”, “routing”, etc.
4. Every port-forwarding entry would consist at least of the port’s number and the IP of the

machine to route it to. That would be the number you’ve entered in the custom port edit field in
the network tab of the OMP window and the LOCAL IP of your client machine. The former
defaults to 2500, the later is probably along the lines of “192.168.x.y”.

5. If there are additional settings, it mostly concerns the port protocol (UDP) and the destination
port (same as the source port, i.e. the custom port from the edit field). Sometimes you can
even specify ranges (just use the one port for an OMP client) and allowed source IPs (specify
the equivalent of ALL then, maybe some wildcard like “*”).

Q: Where is the official server?
A: There is none. At the time of the writing, though, there is a public server hosted by Ren Dhark on
omp.dyndns-server.com, port 1515. You can also point your browser there, it has a nice web-page for
the running ORL (Orbiter Racing League) hosting.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnw2kmag01/html/TimeWin2K.asp�

Orbiter Multiplayer Project V0.6.1 Page 22

11. Appendix A

The following page depicts the syntax of the server’s configuration XML file.

S:\Development\ORRL2010\Orbitersdk\samples\OMP\Orbiter.Multiplayer.Server\Configuration.xsd 28.02.2012 21:58:53

©1998-2006 Altova GmbH http://www.altova.com Page 1Registered to Friedrich Kastner-Masilko (Festo Ges.m.b.H.)

OMP server configuration

OMPServerConfiguration

attributes

The name of the server.

Name

The servers ID.

Id

Path of the Orbiter
installation root directory.
Default is current directory.

OrbiterRoot

Subvisual distance -
Maximum visibility distance
in meters per size in meter.
Default is 1000.

SubvisualDistance

Amount of vertical pixels for
calculation of subvisual
distance. No default. Only if
this together with
FieldOfView is specified, it is
taken into account, otherwise
SubvisualDistance parameter
is used.

VerticalPixels

Angle between upper and
lower ray from viewpoint
through monitor edges. No
default. Only if this together
with VerticalPixels is
specified, it is taken into
account, otherwise
SubvisualDistance parameter
is used.

FieldOfView

Format of the prompt for all
server wide messages.
Default is "{0}", thus
showing the raw message
without timestamp.

PromptFormat

Network

attributes

Global IP address of the
server. Needed for
Server-LAN clients. Default is
empty, causing system to
use local end point IP.

IP

TCP listener port. Default is
1500.

TCP

UDP receiver base port.
Default is 2000.

UDP

UDP receiver count. I.e.
max concurrent client count.

Count

TCP backlog. Default is 10.

Backlog

Web server port. If not
specified, no web server is
started.

Web

NTP

attributes

SNTP sample count for one
NTP cycle. Default is 30.

Samples

NTP cycle count for
calculating average skew.
Default is 60.

History

Local clock offset preset in
seconds. Default is 0.

Offset

Local clock skew preset in
µs/s. Default is 0.

Skew

1 ..

Server

attributes

Server address.

Address

Allowed failures before server
is suspended. Default is 3.

Misses

Delay multiplier for
calculating suspension hits.
Suspension=Delay*current_
Misses. Default is 3.

Delay

Allowed failures before
ignoring server. If misses is
greater than Delay*Alarm,
the server is ignored until
reset. Default is 3.

Alarm

Password

attributes

Admin password for shell
extensions and shutdown.

Admin

Password for container
clients.

Container

Messages

Message on client connect.

Welcome

1 ..

Line

Message on client
disconnect.

Farwell

1 ..

Line

Message on server
shutdown.

Shutdown

1 ..

Line

Timing

attributes

Transmitter wait time in ms.

Transmitter

Garbage collector wait time
in s. Default is 30. This
defines how long a vessel
survives without updates
from the hosting client.

GarbageCollector

SNTP sample interval in ms.
Default is 250. This is the
time between samples.

SNTP

NTP resynchronization interval
in ms. Default is 2000. This is
the time waited until the next
SNTP sampling round is
started.

Resync

Support

1 ..

System

attributes

Name of the supported
system.

Name

1 ..

Class

attributes

Name of supported vessel
class. Special value '*'
addresses all unconfigured
vessel classes.

Name

Vessel class redirection
target. Special value '#' and
everything beginning with'@'
mark ignored classes. The
later is containing a name
pattern for vessels to be
deleted on client-side. The
name pattern should contain
a '*' as place-holder for the
name of the vessel being
deleted together with it. E.g.
'@*_Bay' will delete XR2
bays.

Redirect

Generic vessel class
generator. E.g. Spacecraft3

Generic

Generic scenario definition.
See documentation Appendix
C for details.

Location

Orbiter Multiplayer Project V0.6.1 Page 24

12. Appendix B

The following page depicts the syntax of the client’s configuration XML file.

S:\Development\ORRL2010\Orbitersdk\samples\OMP\Orbiter.Multiplayer.Client\Configuration.xsd 28.02.2012 21:42:36

©1998-2006 Altova GmbH http://www.altova.com Page 1Registered to Friedrich Kastner-Masilko (Festo Ges.m.b.H.)

OMP client configuration

OMPClientConfiguration

attributes

The user name.

Name

The name of the generic
multiplayer-scenario. This will
be enclosed in '$' to ensure
being first entry in Orbiter's
launchpad. Default is
"Multiplayer Session".

Scenario

Network

attributes

Global IP address of the
server.

IP

Server TCP port. Default is
1500.

TCP

UDP receiver port. Default is
2500.

UDP

Client connection
configuration. Default is
"Standard".

Configuration

NTP

attributes

SNTP sample count for one
NTP cycle. Default is 30.

Samples

NTP cycle count for
calculating average skew.
Default is 60.

History

Local clock offset preset in
seconds. Default is 0.

Offset

Local clock skew preset in
µs/s. Default is 0.

Skew

1 ..

Server

attributes

Server address.

Address

Allowed failures before server
is suspended. Default is 3.

Misses

Delay multiplier for
calculating suspension hits.
Suspension=Delay*current_
Misses. Default is 3.

Delay

Allowed failures before
ignoring server. If misses is
greater than Delay*Alarm,
the server is ignored until
reset. Default is 3.

Alarm

User password. Default is
empty.

Password

Timing

attributes

Transmitter wait time in ms.

Transmitter

Clock synchronization wait
time in ms.

Clock

Garbage collector time in s.
Default is 30. This defines
how long a vessel survives
without updates from the
hosting client.

GarbageCollector

SNTP sample interval in ms.
Default is 250. This is the
time between samples.

SNTP

NTP resynchronization interval
in ms. Default is 2000. This is
the time waited until the next
SNTP sampling round is
started.

Resync

Orbiter Multiplayer Project V0.6.1 Page 26

12. Appendix C

Server configuration “Location” definition

The string in this definition is essentially the content of an Orbiter scenario file minus the header
sections BEGIN_DESC / END_DESC and BEGIN_ENVIRONMENT / END_ENVIRONMENT. You can
use every element valid for Orbiter scenario files, including addon-specific sections. In order to allow
different locations, the system allows for special tags within the scenario file to define what elements
are used in what locations. These tags will be processed whenever a client requests the start-up
scenario file from the server.

The following tags are supported:

${IF <id>} This is a conditional tag. Everything between this tag and a subsequent ${IF <id2>}

or a ${FI} tag will be ignored (i.e. NOT written to the final scenario file), if <id> is not
the chosen location. After used for filtering, the server is not sending this tag to
clients. <id> is an integer value greater or equal to zero.

${DESC} This tag can occur anywhere inside a ${IF <x>} region multiple times, but only the

first ${DESC} entry works. Everything between this tag and the next carriage return
will be treated as description string for the location <x>. This string shows up as
entry in the location menu dialog on session start-up. If a location does not have
such a tag, it will not show up and can therefore not be selected. After used for
filtering, the server is not sending this tag to clients.

${NAME} This tag will be replaced with the vessel name given by the user on start-up. This tag

is sent to the client unaltered.

${CLASS} This tag will be replaced with the vessel class selected by the user on start-up. This
tag is sent to the client unaltered.

${FI} This is just a closing tag for ${IF <id>}, i.e., everything between this and a

subsequent ${IF <id>} tag will be written to the scenario file independent of the
chosen location. After used for filtering, the server is not sending this tag to clients.

	OMPPrint
	1. INTRODUCTION
	2. OVERVIEW
	3. DOCUMENT HISTORY
	Version 0.1

	4. INSTALLATION
	5. CONCEPT
	6. SERVER
	C:\Orbiter\Server\Windows>ServerConsole.exe console.xml
	/opt/orbiter/Server/Linux>mono ServerConsole.exe console.xml
	7. PROTOCOL
	7. CLIENT
	8. LIMITATIONS
	9. CHECKLISTS
	10. FAQ
	11. Appendix A
	12. Appendix B
	12. Appendix C

	Configuration
	OMPPrint
	1. INTRODUCTION
	2. OVERVIEW
	3. DOCUMENT HISTORY
	Version 0.1

	4. INSTALLATION
	5. CONCEPT
	6. SERVER
	C:\Orbiter\Server\Windows>ServerConsole.exe console.xml
	/opt/orbiter/Server/Linux>mono ServerConsole.exe console.xml
	7. PROTOCOL
	7. CLIENT
	8. LIMITATIONS
	9. CHECKLISTS
	10. FAQ
	11. Appendix A
	12. Appendix B
	12. Appendix C

	ConfigurationClient
	OMPPrint
	1. INTRODUCTION
	2. OVERVIEW
	3. DOCUMENT HISTORY
	Version 0.1

	4. INSTALLATION
	5. CONCEPT
	6. SERVER
	C:\Orbiter\Server\Windows>ServerConsole.exe console.xml
	/opt/orbiter/Server/Linux>mono ServerConsole.exe console.xml
	7. PROTOCOL
	7. CLIENT
	8. LIMITATIONS
	9. CHECKLISTS
	10. FAQ
	11. Appendix A
	12. Appendix B
	12. Appendix C

